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Comparison of the error terms in the lower bounds of the inequalities (14) and (15) for this 
particular case indicates that the latter lower bound is likely to be better than the former 
for small values of p. 

These results not only include all the results derived earlier in I and I1 and also those 
derived by a number of other authors (see, for example, Robinson 1969a, b where further 
references will be found) as particular cases but go very much farther. 
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A simple method for calculation of conditions behind 
shock waves 

Abstract. Conditions behind the incident and reflected shock wave in a shock tube 
are calculated from the initial conditions of pressure, density and temperature, 
together with the known speed of the incident shock wave. In this method the 
enthalpy of the gas is regarded as consisting of two parts: (i) the enthalpy evaluated 
for a gas consisting of molecules having no internal excitation and (ii) a correction 
term to be added to (i) to take account of internal excitation. An iterative solution to 
the flow equations for incident and reflected shock waves based on this correction 
term is obtained. Results for carbon monoxide are given in graphical form. 

In shock-tube research the need arises for calculating conditions in shock-heated gases 
from known initial conditions and the measured shock speed. Although tables are 
available for some gases, interpolation using a table is not always accurate enough. The 
method presented here is very well suited for computer use. 

In a frame of reference in which the incident shock wave is at rest the equations of state, 
continuity, momentum and energy are, respectively, 

hs + &z2 = h, +&I2 = ho 
where h is given by 

h = (1 +gn)RT+$(T). 

p ,  p and T have their usual meanings, R is the gas constant per gramme, zi is the flow speed 
and h is the specific enthalpy. Suffixes 1 and 2 refer to conditions upstream and down- 
stream of the shock wave, respectively. Conditions 1 are assumed known. Clearly, U, is 
the speed of the shock wave in laboratory coordinates. n is the number of degrees of free- 
dom for rigid molecules (E = 3 ,  5 or 6 according as to whether the gas particles are 
monatomic, linear molecules or non-linear molecules). 

Equation ( 5 )  shows the enthalpy as consisting of two parts: (i) (1 + &n)RT, which is the 
enthalpy appropriate to rigid molecules, and (ii) the term $(T) ,  which represents the 
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contribution to the enthalpy due to internal excitation of the molecules. There is also a 
pressure-dependent part to the enthalpy but, under many shock-tube conditions, this is 
very small and is neglected here. However, this part of the correction could be included 
without changing the principles of the method. m, i and ho are clearly known constants of the 
flow. 

From these equations the following two equations may be derived : 

(7) 
(1 + & ~ ) i / m  - [(( 1 + &~>i/m}' - 2(n + l){ho - +( T2))]"' 

U 2  = 
n+l  

As a first approximation, we put I$( T2) = 0 in ( 7 )  (i,e. we assume no internal excitation of 
the molecules) and the first approximation to 21, is calculated. This is then used in (6) to 
derive T,. With a knowledge of T,, +( T,) can be determined from enthalpy tables. This 
new +(T2) is substituted in (7)  and the cycle repeated until the result has converged to 
sufficient accuracy. The  remaining conditions 2 are then simple to calculate. 

The  equations of continuity, momentum and energy for a frame of reference in which 
the reflected shock wave is at rest are 

where 

where suffixes 2 and 3 refer to conditions upstream and downstream of the shock, re- 
spectively. u3 is the reflected shock speed in laboratory coordinates. Conditions 2 are 
assumed known from the incident shock calculations. 

Equations (8), (9) and (10) are rearranged to give 

( p 3 - p 2 ) ~ 3  = p 2 U  = .A4 ( 8 4  
(9a) 

(loa) 

P3 + ( P 3  - PZ)U3* - 2 P 2 U 3  U = P2 + P 2 U2 = I 
h 3 - ~ 3 U  = h 2 + 4 U 2  = Ho. 

M ,  I and H ,  are known quantities obtained from calculations on the incident shock wave. 
From these equations, together with the equation of state (1) and the enthalpy equation ( 5 ) ,  
the following two equations may be derived : 

Uu 3 

7-3 = ( ; + U 3 )  R(u3 + U )  

The calculation proceeds as for the incident shock wave: a first approximation to ug is 
found by putting +( T 3 )  = 0 and this is used as the starting point for the iteration. 

The  enthalpy tables used in this work are those of Hilsenrath et al. (1960). I t  mas 
found convenient to represent the enthalpy data by a best-fit curve using Chebyshev 
polynomials. A best-fit function involving Chebyshev polynomials up to and including 
degree 10 fitted the enthalpy data in the temperature range 250 OK to 5000 OK to better than 
three significant figures. KO account has been taken of dissociation or ionization, but these 
effects can be included with some modification to the basic method provided that there are 
sufficient thermodynamic data for the gas concerned. 
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Figure 1. Conditions behind incident shock wave in carbon monoxide (TI = 293 OK). 
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Figure 2. Conditions behind reflected shock wave in carbon monoxide (TI = 293 OK). 
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Figures 1 and 2 show the conditions attained behind incident and reflected shock waves 
in carbon monoxide over a range of shock speeds. 

Note  added in proof. Successsive iterations to the solutions of equations ( 6 ) )  (7)  and (I l ) ,  (12) 
oscillate about the true solution: convergence is greatly assisted if each new solution is taken as the 
arithmetic mean of the previous two solutions. 

The work described in this letter has been carried out at the National Physical Labora- 
tory. The author is grateful to Dr. D. Schofield for the curve-fitting programme used to 
determine the best-fit curve to the enthalpy data. 
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